Official OSA COVID-19/Corona Virus Thread

This site may earn a commission from merchant affiliate links, including eBay, Amazon, and others.
Status
Not open for further replies.

dennishoddy

Sharpshooter
Supporting Member
Special Hen Supporter
Joined
Dec 9, 2008
Messages
85,002
Reaction score
62,956
Location
Ponca City Ok
Maybe you have already had Covid and didn't know it. Neurosurgeon told us that he had such a reaction after the first shot that he thinks he had already had it and wasn't even aware of it. @Okie4570 tested positive for the antibodies and never even knew he had it. Numerous people, including doctors, have told us to expect much greater reaction to the second dose. Our daughter had nothing but a bit of a sore arm after the first dose. After the second one, she started developing symptoms about eleven hours later. She got the shot about 8:30AM and started showing symptoms about 7:30 that evening. She had a low grade fever (99.7) throughout the night and terrible body aches. Next morning, add neck pain and a terrible headache. She said about Noon time, it was almost like somebody flipped a switch and she started feeling much better.

.
Wife and I have not been tested for antibodies, but the wife and I both have lost our sense of smell and most of our sense of taste for a couple weeks before taking the vaccine. We still haven't recovered either.
Wife suffered zero response but a one day sore arm. My reaction was much more severe as listed.
Not looking forward to the second dose.
 

ignerntbend

Sharpshooter
Special Hen
Joined
Mar 27, 2009
Messages
15,797
Reaction score
3,270
Location
Oklahoma
@_CY_, you're sick. You suffer from an illness. It isn't your fault. No one's blaming you and you shouldn't blame yourself.
You need help. I'm going to start another thread and we'll start a collection. We'll send you to a place where you can get better. You can get better, but you have to want to get better, and you have to try.
 

_CY_

Sharpshooter
Supporting Member
Special Hen Supporter
Joined
May 11, 2009
Messages
33,848
Reaction score
6,620
Location
tulsa
@_CY_, you're sick. You suffer from an illness. It isn't your fault. No one's blaming you and you shouldn't blame yourself.
You need help. I'm going to start another thread and we'll start a collection. We'll send you to a place where you can get better. You can get better, but you have to want to get better, and you have to try.

can't attack the message, so attack the messenger ... ha ha ha
still waiting for ya to come up with anything of substance ... ha ha ha
 

okcBob

Sharpshooter
Supporting Member
Special Hen Supporter
Joined
May 17, 2020
Messages
5,502
Reaction score
8,681
Location
okc
yes please do provide grad level doc's .. preferably doc's that's been peer reviewed by well known organizations like Nature, BMJ, New England Journal of Medicine, etc. etc.

sorry articles from forbes and CDC doesn't do it for me.
articles from CDC are sooo slanted it's on auto reject.
perhaps that's a bit harsh on CDC, but they have earned it.

Lol, the science articles suggestion was meant for you to review, I’m not your teacher. If you have access to a university library as a student or teacher, they are easy to find. But ok, this is against my better judgement, but I will provide a peer reviewed article about mRNA & how it doesn’t change your dna. From Your well known organization of Nature. Look in The safety sentences regarding the topic. Hope you can get thru it.

https://www.nature.com/articles/nrd.2017.243

Also an article from Harvard Medical school that dispels the myth. If you scroll to the bottom, the list of scientist contributors is substantial. This may help if you have problems with the Nature citation.
https://www.health.harvard.edu/diseases-and-conditions/coronavirus-resource-center

Lastly, I’m done doing research for any more antivaxxers. I’ll just call crazy stuff crazy. It’s tedious to argue over obvious fake claims. After this one, I’m sure there will be another one just as crazy.
 
Last edited:

_CY_

Sharpshooter
Supporting Member
Special Hen Supporter
Joined
May 11, 2009
Messages
33,848
Reaction score
6,620
Location
tulsa
Lol, the science articles suggestion was meant for you to review, I’m not your teacher. If you have access to a university library as a student or teacher, they are easy to find. But ok, this is against my better judgement, but I will provide a peer reviewed article about mRNA & how it doesn’t change your dna. From Your well known organization of Nature. Look in The safety sentences regarding the topic. Hope you can get thru it.

https://www.nature.com/articles/nrd.2017.243

Also an article from Harvard Medical school that dispels the myth. If you scroll to the bottom, the list of scientist contributors is substantial. This may help if you have problems with the Nature citation.
https://www.health.harvard.edu/diseases-and-conditions/coronavirus-resource-center

Lastly, I’m done doing research for any more antivaxxers. I’ll just call crazy stuff crazy. It’s tedious to argue over obvious fake claims. After this one, I’m sure there will be another one just as crazy.

you need to get over yourself .. nature article provides a overview of advances of new mRNA overcoming instability and inefficient in vivo delivery of mRNA, etc. etc. but makes no mention of the topic YOU started. which is mRNA doesn't effect a person's DNA. please note I only read about 30 pages and found nothing remotely related to what you claimed and decided right or wrong. you didn't read the article before posting link. please provide page number for said data if I'm wrong.

same for second article .. more general data points for new mRNA "vaccines" no mention of what you claimed.

I merely asked that YOU provide actual evidence of what you claim.
no actual evidence = BS so far I've not seen anything remotely close to supporting what your claim.
 

okcBob

Sharpshooter
Supporting Member
Special Hen Supporter
Joined
May 17, 2020
Messages
5,502
Reaction score
8,681
Location
okc
I didn’t start this topic, just called it crazy when someone posted it. The corona vaccine does not alter our dna. It just doesn’t, no matter what the crazies claim.

The 1st supports the understanding that mRNA vaccines do not alter dna. If you can’t comprehend it, that’s on you. The second article specifically refutes the antivaxxer claim that the corona virus does not alter our dna-which is what everyone knows, except the tin hat crowd. I’m not gonna waste my time searching for articles that you can understand. I only spent a few min searching, but based on the amount of time you spend on this subject is revealing. I’d suggest psych help. We don’t need to provide any additional support for this subject in order to make you look foolish. You’ve done a good job on that front. Carry on
 
Last edited:

_CY_

Sharpshooter
Supporting Member
Special Hen Supporter
Joined
May 11, 2009
Messages
33,848
Reaction score
6,620
Location
tulsa
Now let's drill in what does worry me about new mRNA "vaccine"
what used to be called “immune enhancement” and now they call it “antibody dependent enhancement” (ADE).

We have never made it through an animal study successfully for this type of virus. We have never done this in humans before…

with new mRNA "vaccines" less than a year old. it's impossible to have enough time to test for reactions in animals. which may or may not happen in the next year(s)? resulting in anaphylaxis?

The studies are far too brief in duration to allow a realistic estimation of side effects. Depending on what those effects end up being, millions of people may be exposed to unacceptable risk in return for a very minor benefit.

======

watch this video by Dr. Lee Merrit

In the following interview, Dr. Lee Merritt explains that mRNA technology is not a vaccine.

former president of the Association of American Physicians and Surgeons (AAPS) Dr. Lee Merritt
 
Last edited:

JD8

Sharpshooter
Supporting Member
Special Hen Supporter
Joined
Jun 13, 2005
Messages
32,946
Reaction score
46,055
Location
Tulsa
you need to get over yourself .. nature article provides a overview of advances of new mRNA overcoming instability and inefficient in vivo delivery of mRNA, etc. etc. but makes no mention of the topic YOU started. which is mRNA doesn't effect a person's DNA. please note I only read about 30 pages and found nothing remotely related to what you claimed and decided right or wrong. you didn't read the article before posting link. please provide page number for said data if I'm wrong.

same for second article .. more general data points for new mRNA "vaccines" no mention of what you claimed.

I merely asked that YOU provide actual evidence of what you claim.
no actual evidence = BS so far I've not seen anything remotely close to supporting what your claim.

Articles that describe mRNA production, transmission across membranes, uptake etc. Not sure if you're being obtuse, or basically you just can't google search/spam your way out of a critical thinking discussion.



1. Sorrentino S. Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci. 1998;54:785–94. doi: 10.1007/s000180050207.[PubMed] [CrossRef] [Google Scholar]
2. Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A. 1989;86:6077–81. doi: 10.1073/pnas.86.16.6077. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3. Hilleman MR. Recombinant vector vaccines in vaccinology. Dev Biol Stand. 1994;82:3–20. [PubMed] [Google Scholar]
4. Liu MA. Immunologic basis of vaccine vectors. Immunity. 2010;33:504–15. doi: 10.1016/j.immuni.2010.10.004. [PubMed] [CrossRef] [Google Scholar]
5. Pascolo S. Vaccination with messenger RNA. Methods Mol Med. 2006;127:23–40. [PubMed] [Google Scholar]
6. Jäschke A, Helm M. RNA sex. Chem Biol. 2003;10:1148–50. doi: 10.1016/j.chembiol.2003.12.003.[PubMed] [CrossRef] [Google Scholar]
7. Chetverin AB. Replicable and recombinogenic RNAs. FEBS Lett. 2004;567:35–41. doi: 10.1016/j.febslet.2004.03.066. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Probst J, Weide B, Scheel B, Pichler BJ, Hoerr I, Rammensee HG, et al. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther. 2007;14:1175–80. doi: 10.1038/sj.gt.3302964. [PubMed] [CrossRef] [Google Scholar]
9. Fotin-Mleczek M, Duchardt KM, Lorenz C, Pfeiffer R, Ojkić-Zrna S, Probst J, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother. 2011;34:1–15. doi: 10.1097/CJI.0b013e3181f7dbe8. [PubMed] [CrossRef] [Google Scholar]
10. Kaslow DC. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases. Trans R Soc Trop Med Hyg. 2004;98:593–601. doi: 10.1016/j.trstmh.2004.03.007. [PubMed] [CrossRef] [Google Scholar]
11. Krieg PA, Melton DA. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984;12:7057–70. doi: 10.1093/nar/12.18.7057. [PMC free article][PubMed] [CrossRef] [Google Scholar]
12. Banerjee AK. 5′-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol Rev. 1980;44:175–205. [PMC free article] [PubMed] [Google Scholar]
13. Wickens M. How the messenger got its tail: addition of poly(A) in the nucleus. Trends Biochem Sci. 1990;15:277–81. doi: 10.1016/0968-0004(90)90054-F. [PubMed] [CrossRef] [Google Scholar]
14. Konarska MM, Padgett RA, Sharp PA. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell. 1984;38:731–6. doi: 10.1016/0092-8674(84)90268-X. [PubMed] [CrossRef] [Google Scholar]
15. Munroe D, Jacobson A. mRNA poly(A) tail, a 3′ enhancer of translational initiation. Mol Cell Biol. 1990;10:3441–55. [PMC free article] [PubMed] [Google Scholar]
16. Gong P, Martin CT. Mechanism of instability in abortive cycling by T7 RNA polymerase. J Biol Chem. 2006;281:23533–44. doi: 10.1074/jbc.M604023200. [PubMed] [CrossRef] [Google Scholar]
17. Schenborn ET, Mierendorf RC., Jr. A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 1985;13:6223–36. doi: 10.1093/nar/13.17.6223.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
18. Arnaud-Barbe N, Cheynet-Sauvion V. Oriol G, Mandrand B, Mallet F. Transcription of RNA templates by T7 RNA polymerase. Nucleic Acids Res. 1998;26:3550–4. doi: 10.1093/nar/26.15.3550.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
19. Pascolo S. Messenger RNA-based vaccines. Expert Opin Biol Ther. 2004;4:1285–94. doi: 10.1517/14712598.4.8.1285. [PubMed] [CrossRef] [Google Scholar]
20. Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39:e142. doi: 10.1093/nar/gkr695. [PMC free article][PubMed] [CrossRef] [Google Scholar]
21. Gallie DR. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991;5:2108–16. doi: 10.1101/gad.5.11.2108. [PubMed] [CrossRef] [Google Scholar]
22. Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol. 2004;11:121–7. doi: 10.1038/nsmb724. [PubMed] [CrossRef] [Google Scholar]
23. Yamashita A, Chang T-C, Yamashita Y, Zhu W, Zhong Z, Chen C-YA, et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol. 2005;12:1054–63. doi: 10.1038/nsmb1016. [PubMed] [CrossRef] [Google Scholar]
24. Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol. 1989;9:5134–42. [PMC free article] [PubMed] [Google Scholar]
25. Kozak M. A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expr. 1991;1:111–5. [PMC free article] [PubMed] [Google Scholar]
26. Wilkie GS, Dickson KS, Gray NK. Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci. 2003;28:182–8. doi: 10.1016/S0968-0004(03)00051-3. [PubMed] [CrossRef] [Google Scholar]
27. Wang Z, Day N, Trifillis P, Kiledjian M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol. 1999;19:4552–60. [PMC free article] [PubMed] [Google Scholar]
28. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995;59:423–50. [PMC free article][PubMed] [Google Scholar]
29. Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 2005;33:7138–50. doi: 10.1093/nar/gki1012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
30. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E. Deadenylation is a widespread effect of miRNA regulation. RNA. 2009;15:21–32. doi: 10.1261/rna.1399509.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
31. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40. doi: 10.1038/nature09267. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
32. Fang Z, Rajewsky N. The impact of miRNA target sites in coding sequences and in 3’UTRs. PLoS One. 2011;6:e18067. doi: 10.1371/journal.pone.0018067. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
33. Pasquinelli AE, Dahlberg JE, Lund E. Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA. 1995;1:957–67. [PMC free article] [PubMed] [Google Scholar]
34. Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl (3′-deoxy)GpppG. RNA. 2001;7:1486–95. [PMC free article] [PubMed] [Google Scholar]
35. Venkatesan S, Gershowitz A, Moss B. Modification of the 5′ end of mRNA. Association of RNA triphosphatase with the RNA guanylyltransferase-RNA (guanine-7-)methyltransferase complex from vaccinia virus. J Biol Chem. 1980;255:903–8. [PubMed] [Google Scholar]
36. Grudzien E, Kalek M, Jemielity J, Darzynkiewicz E, Rhoads RE. Differential inhibition of mRNA degradation pathways by novel cap analogs. J Biol Chem. 2006;281:1857–67. doi: 10.1074/jbc.M509121200. [PubMed] [CrossRef] [Google Scholar]
37. Zohra FT, Chowdhury EH, Tada S, Hoshiba T, Akaike T. Effective delivery with enhanced translational activity synergistically accelerates mRNA-based transfection. Biochem Biophys Res Commun. 2007;358:373–8. doi: 10.1016/j.bbrc.2007.04.059. [PubMed] [CrossRef] [Google Scholar]
38. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 2010;70:9053–61. doi: 10.1158/0008-5472.CAN-10-2880.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
39. Rydzik AM, Kulis M, Lukaszewicz M, Kowalska J, Zuberek J, Darzynkiewicz ZM, et al. Synthesis and properties of mRNA cap analogs containing imidodiphosphate moiety--fairly mimicking natural cap structure, yet resistant to enzymatic hydrolysis. Bioorg Med Chem. 2012;20:1699–710. doi: 10.1016/j.bmc.2012.01.013. [PubMed] [CrossRef] [Google Scholar]
40. Grudzien-Nogalska E, Jemielity J, Kowalska J, Darzynkiewicz E, Rhoads RE. Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA. 2007;13:1745–55. doi: 10.1261/rna.701307. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
41. Peng J, Schoenberg DR. mRNA with a <20-nt poly(A) tail imparted by the poly(A)-limiting element is translated as efficiently in vivo as long poly(A) mRNA. 2005; 11:1131-40. [PMC free article] [PubMed]
42. Elango N, Elango S, Shivshankar P, Katz MS. Optimized transfection of mRNA transcribed from a d(A/T)100 tail-containing vector. Biochem Biophys Res Commun. 2005;330:958–66. doi: 10.1016/j.bbrc.2005.03.067. [PubMed] [CrossRef] [Google Scholar]
43. Carralot J-P, Weide B, Schoor O, Probst J, Scheel B, Teufel R, et al. Production and characterization of amplified tumor-derived cRNA libraries to be used as vaccines against metastatic melanomas. Genet Vaccines Ther. 2005;3:6. doi: 10.1186/1479-0556-3-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
44. Kreiter S, Selmi A, Diken M, Sebastian M, Osterloh P, Schild H, et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol. 2008;180:309–18.[PubMed] [Google Scholar]
45. Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010;70:9031–40. doi: 10.1158/0008-5472.CAN-10-0699. [PubMed] [CrossRef] [Google Scholar]
46. Gallie DR, Tanguay RL, Leathers V. The tobacco etch viral 5′ leader and poly(A) tail are functionally synergistic regulators of translation. Gene. 1995;165:233–8. doi: 10.1016/0378-1119(95)00521-7.[PubMed] [CrossRef] [Google Scholar]
47. Karikó K, Muramatsu H, Keller JM, Weissman D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther. 2012;20:948–53. doi: 10.1038/mt.2012.7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
48. Vivinus S, Baulande S, van Zanten M, Campbell F, Topley P, Ellis JH, et al. An element within the 5′ untranslated region of human Hsp70 mRNA which acts as a general enhancer of mRNA translation. Eur J Biochem. 2001;268:1908–17. doi: 10.1046/j.1432-1327.2001.02064.x. [PubMed] [CrossRef] [Google Scholar]
49. Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun. 2010;394:189–93. doi: 10.1016/j.bbrc.2010.02.150. [PubMed] [CrossRef] [Google Scholar]
50. Tan X, Wan Y. Enhanced protein expression by internal ribosomal entry site-driven mRNA translation as a novel approach for in vitro loading of dendritic cells with antigens. Hum Immunol. 2008;69:32–40. doi: 10.1016/j.humimm.2007.11.009. [PubMed] [CrossRef] [Google Scholar]
51. Goodarzi H, Najafabadi HS, Oikonomou P, Greco TM, Fish L, Salavati R, et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature. 2012;485:264–8. doi: 10.1038/nature11013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
52. Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T. Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol. 2001;53:290–8. doi: 10.1007/s002390010219. [PubMed] [CrossRef] [Google Scholar]
53. Duret L. Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev. 2002;12:640–9. doi: 10.1016/S0959-437X(02)00353-2. [PubMed] [CrossRef] [Google Scholar]
54. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986;44:283–92. doi: 10.1016/0092-8674(86)90762-2.[PubMed] [CrossRef] [Google Scholar]
55. Liu Q. Comparative analysis of base biases around the stop codons in six eukaryotes. Biosystems. 2005;81:281–9. doi: 10.1016/j.biosystems.2005.05.005. [PubMed] [CrossRef] [Google Scholar]
56. Mockey M, Gonçalves C, Dupuy FP, Lemoine FM, Pichon C, Midoux P. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun. 2006;340:1062–8. doi: 10.1016/j.bbrc.2005.12.105. [PubMed] [CrossRef] [Google Scholar]
57. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, et al. Modification of antigen-encoding RNA increases stability, translational efficacy and T-cell stimulatory capacity of dendritic cells. Blood. 2006;108:4009–17. doi: 10.1182/blood-2006-04-015024. [PubMed] [CrossRef] [Google Scholar]
58. Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, et al. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 2010;17:961–71. doi: 10.1038/gt.2010.52. [PubMed] [CrossRef] [Google Scholar]
59. Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Thess A, Duchardt KM, et al. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J Gene Med. 2012;14:428–39. doi: 10.1002/jgm.2605. [PubMed] [CrossRef] [Google Scholar]
60. Yamamoto A, Kormann M, Rosenecker J, Rudolph C. Current prospects for mRNA gene delivery. Eur J Pharm Biopharm. 2009;71:484–9. doi: 10.1016/j.ejpb.2008.09.016. [PubMed] [CrossRef] [Google Scholar]
61. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–8. doi: 10.1126/science.1690918. [PubMed] [CrossRef] [Google Scholar]
62. Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johanning F, et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 1995;55:1397–400. [PubMed] [Google Scholar]
63. Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol. 2000;30:1–7. doi: 10.1002/1521-4141(200001)30:1<1::AID-IMMU1>3.0.CO;2-#. [PubMed] [CrossRef] [Google Scholar]
64. Carralot JP, Probst J, Hoerr I, Scheel B, Teufel R, Jung G, et al. Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci. 2004;61:2418–24. doi: 10.1007/s00018-004-4255-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
65. Kormann MSD, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 2011;29:154–7. doi: 10.1038/nbt.1733. [PubMed] [CrossRef] [Google Scholar]
66. Budker V, Budker T, Zhang G, Subbotin V, Loomis A, Wolff JA. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med. 2000;2:76–88. doi: 10.1002/(SICI)1521-2254(200003/04)2:2<76::AID-JGM97>3.0.CO;2-4. [PubMed] [CrossRef] [Google Scholar]
67. Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science. 2003;301:1545–7. doi: 10.1126/science.1087117. [PubMed] [CrossRef] [Google Scholar]
68. Lingor P, Michel U, Schöll U, Bähr M, Kügler S. Transfection of “naked” siRNA results in endosomal uptake and metabolic impairment in cultured neurons. Biochem Biophys Res Commun. 2004;315:1126–33. doi: 10.1016/j.bbrc.2004.01.170. [PubMed] [CrossRef] [Google Scholar]
69. Wolff JA, Budker V. The mechanism of naked DNA uptake and expression. Adv Genet. 2005;54:3–20. doi: 10.1016/S0065-2660(05)54001-X. [PubMed] [CrossRef] [Google Scholar]
70. Ulvila J, Parikka M, Kleino A, Sormunen R, Ezekowitz RA, Kocks C, et al. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem. 2006;281:14370–5. doi: 10.1074/jbc.M513868200. [PubMed] [CrossRef] [Google Scholar]
71. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58:32–45. doi: 10.1124/pr.58.1.8. [PubMed] [CrossRef] [Google Scholar]
72. Saleh M-C, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol. 2006;8:793–802. doi: 10.1038/ncb1439. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
73. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007;25:1149–57. doi: 10.1038/nbt1339. [PubMed] [CrossRef] [Google Scholar]
74. Lorenz C, Fotin-Mleczek M, Roth G, Becker C, Dam TC, Verdurmen WPR, et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 2011;8:627–36. doi: 10.4161/rna.8.4.15394. [PubMed] [CrossRef] [Google Scholar]
75. Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol. 2002;14:123–8. doi: 10.1016/S0952-7915(01)00307-7. [PubMed] [CrossRef] [Google Scholar]
76. Greaves DR, Gordon S. Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. J Lipid Res. 2005;46:11–20. doi: 10.1194/jlr.R400011-JLR200. [PubMed] [CrossRef] [Google Scholar]

77. Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359. [PubMed] [CrossRef] [Google Scholar]
78. Graf GA, Connell PM, van der Westhuyzen DR, Smart EJ. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J Biol Chem. 1999;274:12043–8. doi: 10.1074/jbc.274.17.12043. [PubMed] [CrossRef] [Google Scholar]
79. Diken M, Kreiter S, Selmi A, Britten CM, Huber C, Türeci Ö, et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 2011;18:702–8. doi: 10.1038/gt.2011.17. [PubMed] [CrossRef] [Google Scholar]
80. Probst J, Fotin-Mleczek M, Schlake T, Thess A, Kramps T, Kallen K-J. Messenger RNA Vaccines. Gene Vaccines. Vienna: Springer Vienna, 2012:223-45. [Google Scholar]
81. González-González E, Ra H, Spitler R, Hickerson RP, Contag CH, Kaspar RL. Increased interstitial pressure improves nucleic acid delivery to skin enabling a comparative analysis of constitutive promoters. Gene Ther. 2010;17:1270–8. doi: 10.1038/gt.2010.74. [PubMed] [CrossRef] [Google Scholar]
82. Herweijer H, Wolff JA. Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther. 2007;14:99–107. [PubMed] [Google Scholar]
83. Danialou G, Comtois AS, Matecki S, Nalbantoglu J, Karpati G, Gilbert R, et al. Optimization of regional intraarterial naked DNA-mediated transgene delivery to skeletal muscles in a large animal model. Mol Ther. 2005;11:257–66. doi: 10.1016/j.ymthe.2004.09.016. [PubMed] [CrossRef] [Google Scholar]
84. Probst J, Brechtel S, Scheel B, Hoerr I, Jung G, Rammensee H-G, et al. Characterization of the ribonuclease activity on the skin surface. Genet Vaccines Ther. 2006;4:4. doi: 10.1186/1479-0556-4-4.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
85. Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 2001;29:3882–91. doi: 10.1093/nar/29.18.3882. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
86. Huth S, Hoffmann F, von Gersdorff K, Laner A, Reinhardt D, Rosenecker J, et al. Interaction of polyamine gene vectors with RNA leads to the dissociation of plasmid DNA-carrier complexes. J Gene Med. 2006;8:1416–24. doi: 10.1002/jgm.975. [PubMed] [CrossRef] [Google Scholar]
87. Martinon F, Krishnan S, Lenzen G, Magné R, Gomard E, Guillet JG, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol. 1993;23:1719–22. doi: 10.1002/eji.1830230749. [PubMed] [CrossRef] [Google Scholar]
88. Hess PR, Boczkowski D, Nair SK, Snyder D, Gilboa E. Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol Immunother. 2006;55:672–83. doi: 10.1007/s00262-005-0064-z. [PubMed] [CrossRef] [Google Scholar]
89. Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R, et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther. 1999;10:2719–24. doi: 10.1089/10430349950016762. [PubMed] [CrossRef] [Google Scholar]
90. Mockey M, Bourseau E, Chandrashekhar V, Chaudhuri A, Lafosse S, Le Cam E, et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther. 2007;14:802–14. doi: 10.1038/sj.cgt.7701072.[PubMed] [CrossRef] [Google Scholar]
91. Mathers AR, Larregina AT. Professional antigen-presenting cells of the skin. Immunol Res. 2006;36:127–36. doi: 10.1385/IR:36:1:127. [PubMed] [CrossRef] [Google Scholar]
92. van den Berg JH, Oosterhuis K, Hennink WE, Storm G, van der Aa LJ, Engbersen JFJ, et al. Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity. J Control Release. 2010;141:234–40. doi: 10.1016/j.jconrel.2009.09.005. [PubMed] [CrossRef] [Google Scholar]
93. Thomas M, Ge Q, Lu JJ, Chen J, Klibanov AM. Cross-linked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm Res. 2005;22:373–80. doi: 10.1007/s11095-004-1874-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
94. Soliman M, Nasanit R, Abulateefeh SR, Allen S, Davies MC, Briggs SS, et al. Multicomponent synthetic polymers with viral-mimetic chemistry for nucleic acid delivery. Mol Pharm. 2012;9:1–13. doi: 10.1021/mp200108q. [PubMed] [CrossRef] [Google Scholar]
95. Zhang Y, Satterlee A, Huang L. In vivo gene delivery by nonviral vectors: overcoming hurdles? Mol Ther. 2012;20:1298–304. doi: 10.1038/mt.2012.79. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
96. Xiao Z, Levy-Nissenbaum E, Alexis F, Lupták A, Teply BA, Chan JM, et al. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano. 2012;6:696–704. doi: 10.1021/nn204165v. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
97. Gurdon JB, Lane CD, Woodland HR, Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature. 1971;233:177–82. doi: 10.1038/233177a0.[PubMed] [CrossRef] [Google Scholar]
98. Laskey RA, Gurdon JB, Crawford LV. Translation of encephalomyocarditis viral RNA in oocytes of Xenopus laevis. Proc Natl Acad Sci U S A. 1972;69:3665–9. doi: 10.1073/pnas.69.12.3665.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
99. Ahlquist P, French R, Janda M, Loesch-Fries LS. Multicomponent RNA plant virus infection derived from cloned viral cDNA. Proc Natl Acad Sci U S A. 1984;81:7066–70. doi: 10.1073/pnas.81.22.7066.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
100. van der Werf S, Bradley J, Wimmer E, Studier FW, Dunn JJ. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986;83:2330–4. doi: 10.1073/pnas.83.8.2330. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
101. Callis J, Fromm M, Walbot V. Expression of mRNA electroporated into plant and animal cells. Nucleic Acids Res. 1987;15:5823–31. doi: 10.1093/nar/15.14.5823. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
102. Karikó K, Kuo A, Barnathan E. Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther. 1999;6:1092–100. doi: 10.1038/sj.gt.3300930. [PubMed] [CrossRef] [Google Scholar]
103. Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–30. doi: 10.1016/j.stem.2010.08.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
104. Cho KW, Morita EA, Wright CV, De Robertis EM. Overexpression of a homeodomain protein confers axis-forming activity to uncommitted Xenopus embryonic cells. Cell. 1991;65:55–64. doi: 10.1016/0092-8674(91)90407-P. [PubMed] [CrossRef] [Google Scholar]
105. Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med. 1996;184:465–72. doi: 10.1084/jem.184.2.465.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
106. Qiu P, Ziegelhoffer P, Sun J, Yang NS. Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther. 1996;3:262–8. [PubMed] [Google Scholar]
107. Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16:1833–40. doi: 10.1038/mt.2008.200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
108. Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010;38:5884–92. doi: 10.1093/nar/gkq347. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
109. Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell. 2006;124:849–63. doi: 10.1016/j.cell.2006.02.019. [PubMed] [CrossRef] [Google Scholar]
110. Isaacs A, Cox RA, Rotem Z. Foreign nucleic acids as the stimulus to make interferon. Lancet. 1963;2:113–6. doi: 10.1016/S0140-6736(63)92585-6. [PubMed] [CrossRef] [Google Scholar]
111. Field AK, Tytell AA, Lampson GP, Hilleman MR. Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc Natl Acad Sci U S A. 1967;58:1004–10. doi: 10.1073/pnas.58.3.1004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
112. Absher M, Stinebring WR. Toxic properties of a synthetic double-stranded RNA. Endotoxin-like properties of poly I. poly C, an interferon stimulator. Nature. 1969;223:715–7. doi: 10.1038/223715a0.[PubMed] [CrossRef] [Google Scholar]
113. Scheel B, Braedel S, Probst J, Carralot J-P, Wagner H, Schild H, et al. Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol. 2004;34:537–47. doi: 10.1002/eji.200324198. [PubMed] [CrossRef] [Google Scholar]
114. Scheel B, Teufel R, Probst J, Carralot J-P, Geginat J, Radsak M, et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol. 2005;35:1557–66. doi: 10.1002/eji.200425656. [PubMed] [CrossRef] [Google Scholar]
115. Rettig L, Haen SP, Bittermann AG, von Boehmer L, Curioni A, Krämer SD, et al. Particle size and activation threshold: a new dimension of danger signaling. Blood. 2010;115:4533–41. doi: 10.1182/blood-2009-11-247817. [PubMed] [CrossRef] [Google Scholar]
116. Parvanova I, Rettig L, Knuth A, Pascolo S. The form of NY-ESO-1 antigen has an impact on the clinical efficacy of anti-tumor vaccination. Vaccine. 2011;29:3832–6. doi: 10.1016/j.vaccine.2011.03.073.[PubMed] [CrossRef] [Google Scholar]
117. Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008;8:559–68. doi: 10.1038/nri2314. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
118. McCartney SA, Colonna M. Viral sensors: diversity in pathogen recognition. Immunol Rev. 2009;227:87–94. doi: 10.1111/j.1600-065X.2008.00726.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
119. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732–8. doi: 10.1038/35099560.[PubMed] [CrossRef] [Google Scholar]
120. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303:1529–31. doi: 10.1126/science.1093616. [PubMed] [CrossRef] [Google Scholar]
121. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303:1526–9. doi: 10.1126/science.1093620. [PubMed] [CrossRef] [Google Scholar]
122. Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279:12542–50. doi: 10.1074/jbc.M310175200. [PubMed] [CrossRef] [Google Scholar]
123. Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reis e Sousa C. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol. 2006;36:3256–67. doi: 10.1002/eji.200636617. [PubMed] [CrossRef] [Google Scholar]
124. Hornung V, Barchet W, Schlee M, Hartmann G. RNA recognition via TLR7 and TLR8. Handb Exp Pharmacol. 2008;183:71–86. doi: 10.1007/978-3-540-72167-3_4. [PubMed] [CrossRef] [Google Scholar]
125. Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M., Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature. 2008;454:523–7. doi: 10.1038/nature07106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
126. Uzri D, Gehrke L. Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J Virol. 2009;83:4174–84. doi: 10.1128/JVI.02449-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
127. Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science. 2006;314:994–7. doi: 10.1126/science.1132505. [PubMed] [CrossRef] [Google Scholar]
128. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006;314:997–1001. doi: 10.1126/science.1132998. [PubMed] [CrossRef] [Google Scholar]
129. Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell. 2010;140:397–408. doi: 10.1016/j.cell.2010.01.020. [PubMed] [CrossRef] [Google Scholar]
130. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–5. doi: 10.1038/nature04734. [PubMed] [CrossRef] [Google Scholar]
131. Wilkins C, Gale M., Jr. Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol. 2010;22:41–7. doi: 10.1016/j.coi.2009.12.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
132. Bruns AM, Horvath CM. Activation of RIG-I-like receptor signal transduction. Crit Rev Biochem Mol Biol. 2012;47:194–206. doi: 10.3109/10409238.2011.630974. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
133. Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol. 2011;12:137–43. doi: 10.1038/ni.1979. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
134. Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2′-5’oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev. 2007;18:351–61. doi: 10.1016/j.cytogfr.2007.06.003. [PubMed] [CrossRef] [Google Scholar]
135. Nallagatla SR, Hwang J, Toroney R, Zheng X, Cameron CE, Bevilacqua PC. 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science. 2007;318:1455–8. doi: 10.1126/science.1147347. [PubMed] [CrossRef] [Google Scholar]
136. Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23:165–75. doi: 10.1016/j.immuni.2005.06.008. [PubMed] [CrossRef] [Google Scholar]
137. Anderson BR, Muramatsu H, Jha BK, Silverman RH, Weissman D, Karikó K. Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 2011;39:9329–38. doi: 10.1093/nar/gkr586. [PMC free article][PubMed] [CrossRef] [Google Scholar]
138. Granstein RD, Ding W, Ozawa H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J Invest Dermatol. 2000;114:632–6. doi: 10.1046/j.1523-1747.2000.00929.x. [PubMed] [CrossRef] [Google Scholar]
139. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol. 1998;16:364–9. doi: 1
 

JD8

Sharpshooter
Supporting Member
Special Hen Supporter
Joined
Jun 13, 2005
Messages
32,946
Reaction score
46,055
Location
Tulsa
Now let's drill in what does worry me about new mRNA "vaccine"
what used to be called “immune enhancement” and now they call it “antibody dependent enhancement” (ADE).

We have never made it through an animal study successfully for this type of virus. We have never done this in humans before…

with new mRNA "vaccines" less than a year old. it's impossible to have enough time to test for reactions in animals. which may or may not happen in the next year(s)? resulting in anaphylaxis?

======

watch this video by Dr. Lee Merrit

In the following interview, Dr. Lee Merritt explains that mRNA technology is not a vaccine, mirroring what Dr. David Martin also stated recently.


Brother, you won't admit this..... but you're dead wrong. You're obviously educated by a google search and it shows.

Animal studies...

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449230/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458800/


These are starters.... if you reference google scholar with mRNA and animal models you get 2,100,000 hits.

Probably safe to say that notion that they understand the process, HINT: not new to Covid, in animals.

Finally.

https://www.merriam-webster.com/dictionary/vaccine

Looks like it fits the definition.
 
Last edited:

okcBob

Sharpshooter
Supporting Member
Special Hen Supporter
Joined
May 17, 2020
Messages
5,502
Reaction score
8,681
Location
okc
you need to get over yourself .. nature article provides a overview of advances of new mRNA overcoming instability and inefficient in vivo delivery of mRNA, etc. etc. but makes no mention of the topic YOU started. which is mRNA doesn't effect a person's DNA. please note I only read about 30 pages and found nothing remotely related to what you claimed and decided right or wrong. you didn't read the article before posting link. please provide page number for said data if I'm wrong.

same for second article .. more general data points for new mRNA "vaccines" no mention of what you claimed.

I merely asked that YOU provide actual evidence of what you claim.
no actual evidence = BS so far I've not seen anything remotely close to supporting what your claim.


Get over myself? I’m nobody special-just ask my wife....
I’m not a physician or a scientist. Never claimed to be. I’m just someone who can read a scientific academic journal- been subscribing to & reading them for 40 yrs due to my job.
The covid vaccine doesn’t alter your dna. It just doesn’t. You may not believe it, but that was the antivaxxer claim that I called wrong. Nobody cares if you don’t believe it, but serious people won’t give you any credibility.
 
Status
Not open for further replies.

Latest posts

Top Bottom